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ABSTRACT

An analogy between inelastic strains caused by temperature and those caused by
creep is presented in terms of isotropic elasticity. It is shown how the theoreti-
cal aspects can be blended with existing finite-element computer programs to exact
a piecewise linear solution. The c¢reep effect is determined by using the thermal
stress computational approach, if appropriate alterations are made to the thermal
expansion of the individual elements. The overall transient solution is achieved
by consecutive piecewise linear iterations. The total residue caused by creep is
obtained by accumulating creep residues for each iteration and then resubmitting the
total residues for each element as an equivalent input. A typical creep law is
tested for incremental time convergence. The results indicate that the approach is
practical, with a valid indication of the extent of creep after approximately 20 hr
of incremental time. The general analogy between body forces and inelastic strain
gradients is discussed with respect to how an inelastic problem can be worked as an
elastic problem.

INTRODUCTION

Residual stresses caused by creep are important to airframe designers because
the stresses manifest themselves as excessive deformations, local buckling, or struc-
tural failure (refs. 1 to 4). Effective airframe design should include the complete
utilization of available analysis tools. The purpose of this paper is to present an
analogus relationship for predicting residual stresses caused by creep in built-up
structures. Using existing finite-element computer programs, it will be shown how
an analogy between inelastic strains representing temperature and creep presents a
viable approach to a complex problem. The mathematics of the analogy are presented
in terms of isotropic elasticity, and practical applications are also considered.

NOMENCLATURE
E Young's modulus, Pa (lb/in2)
G shear modulus, Pa (1lb/in2)
T temperature, K (°F)
t time, hr
Qa coefficient of thermal expansion, m/m K (in/in °F)
Gij Kronecker delta
€ strain, m/m (in/in)
n arbitrary constant

v Poisson's ratio



o stress, Pa (1b/in2)

Subscripts:
AVG average
c creep

i,j,k,1,m integers
P plasticity

T temperature
RESULTS AND DISCUSSION

Strain Relations

Strain can be considered to be composed of an elastic part and an inelastic
part, and can be represented as

€ =

]
1j eij +

e;j (1)

elastic inelastic

Inelastic strains, e;j, may be composed of several parts, such as temperature,

creep, and plasticity, in which case
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Elastic strains (that is those that cause stress) may be written as the difference
between the total strain and the inelastic strain:

€

eij = 13 - e;j (3)

The elastic strain, eij, is related to stress through the generalized Hooke's law

(ref. 5) for isotropic elasticity
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Gij =0 when i # j

The general equation (4) may be rewritten as follows in terms of the right side
of equation (3) to include the inelastic strain
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Equations (3) and (4) are the constitutive equations whereby a thermoelastic
problem can be formulated as
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Similarly, a creep problem can be formulated as

o1 s
- " S 5 IR AN - A
€13 13,72 T+ W 26 e (8)

The same rationale can be extended to a collective problem of creep and temperature:
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Equations (7), (8), and (9) lead to several important observations. First, it
is obvious that equations (7) and (8) have a computationally analogous form. This
allows the conclusion that a creep problem can be computed as a thermoelastic
problem by equating

" = g%,
1
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ijc - (10)

For a thermoelastic problem, the inelastic strain is

" -
eijT = of (11)

Secondly, equation (9), which states the collective problem of temperature and
creep effects, also provides the basis for the use of finite-element software for a
combined thermoelastic and creep analysis in a piecewise linear manner. A piecewise
linear analysis of a problem in which temperature and creep effects are present is
approached by combining the creep strain e;j at a discrete time tp with the temper-

(o
ature strains E;. so that a composite inelastic strain €',
3 ij
T CT
posite strain can be represented as

is created. This com-
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Equation (12) can be used in conjunction with equations (7) to (9) to form isotropic
elasticity relationships.



Finite-Element Methodology

Since it was established in the previous section that a creep problem can be
computed as a temperature problem, the procedure using finite~element structural
computer programs is discussed. The basic problem of computing residual stresses
due to creep in a built-up structure is readily suitable to a piecewise linear
analysis. This is particularly true if the new, very fast computers are used. A
basic flow diagram presented in figure 1 illustrates the approach.

Since the necessity for studying creep in an airframe application is the pres-
ence of elevated temperature, it must be assumed that a thermostructural analysis
is required. Therefore, the basic sequence begins by making geometric, material,
force, and temperature inputs from which element stresses are computed. The element
stresses are then input to an appropriate creep law and it is determined which of
the elemeénts are creeping. If no elements have temperature and stress combinations
that result in creep, then the stresses are static and there is no creep problem.
However, if one or more elements are creeping, then an amount of creep strain is
computed from the creep law for each element, based on the particular stress and
temperature situation for that element. This amount of creep deduced from the creep
law is also based on some predetermined time interval of suitable convergence.

The amount of creep strain occurring in each creeping element must then be con-
verted to an equivalent thermal strain of. This is most easily accomplished by
adjusting the coefficient of thermal expansion o for each creeping element. Then,
in the case of a transient problem, different temperatures and forces are resub-
mitted and a new set of element stresses is computed for comparison with the creep
law. Additional creep strains are compiled and reduced to oT inputs so that the
cycle can be repeated for more time increments. Using this process, the operating
stresses and changes in operating stresses with time are identified.

The total residual stress caused by creep at the end of m time cycles is com-
puted from cumulative creep strains of the individual elements. This is a single
computation with the cumulative individual creep strains represented by the gquan-
tity oTf. The first step is applying a uniform temperature to the structure, then
altering the coefficient of thermal expansion of each of the creeping elements so
that the alteration of the guanitity of equals the cumulative creep in that element.
If a problem entails a large number of creeping elements, then a significant amount
of extra labor is required to produce additional element property and material cards
to describe the problem. Problems in which there are very few creeping elements and
the elements are discrete (not connected to any other creeping elements) may be ap-
proached by altering the temperatures at the boundary of the element. This is dis-
cussed in some detail in the next section.

Applications

Altering a or T. — Consider the basic structural situation of figure 2, which
consists of a system of five node points with four elements connecting these node
points. The basic inelastic strain of the elements caused by temperature for this
problem is

(Tk + Tz) (13)
e"'. = —————— akl 3
ij 2

Tks

where k = 1, 2, 3, 4, and £ = 5.
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When the stresses resulting from a creep problem are computed using the thermo-
elastic feature of any finite-element computer program, either the coefficient of
thermal expansion o or the temperature T must be altered an amount relative to the
creep strain. If the problem is approached using the temperatures as the altered
parameter, the strain in the individual elements must be changed by a factor, Nkg:

N Ty + Ty Tk + Ty

€y T ™2 (—-—2 )"'xz = (—-‘“"*2 )m (14)
J
Txs

where k = 1, 2, 3, 4, and £ = 5.

Unless the creeping elements are isolated, discrete, and not connected to any
other creeping elements, a major computational dilemma exists. Consider the case
where two of the elements of figure 2 (1-5 and 3-5) are creeping. If the problem is
approached by altering the temperatures, then for element 1-5 the appropriate change
in inelastic strain is made by altering the average temperature of the element by
Nkg such that

Tq + Ty
Tave = M5 (_2_) (15)

for the element 3-5

T3 + T
Tavg = M35 (—‘5— (16)

These inputs result in temperatures of nqy5 T4, n35 T3, and nqg n3s5 Ts, for node
points 1, 3, and 5, respectively.

The overall input is obviously inconsistent at point 5 for the individual ele-
ment requirements of equations (15) and (16). This result becomes more incorrect as
additional creeping elements are connected to point 5. Therefore, a general rule
can be stated: If creeping elements are not discrete and are connected to other
creeping elements, the problem may not be approached by analogy as a thermoelastic
problem by altering nodal temperatures. The solution to such a problem requires the
alteration of the individual coefficients of thermal expansion of the individual
elements.

To solve the figure 2 problem, do not alter inputs directly to the nodes, but

alter inputs directly to the elements. Altering the material property cards, the
approach for the figure 2 problem would be

°;5 = N5 %15 (17)
and

1]
a3s5 = n35 035 (18)

Equations (17) and (18) allow inputs consistent with equations (15) and (16),
regardless of how many elements within the system are creeping or how they are
interconnected.



Uniformly inelastically strained element. — A frequent uncertainty concerns the
relationship between free thermal expansion and stress. Consider a completely
unrestrained elastic body with a uniform initial temperature. The body is then
subjected to a uniform temperature change, resulting in thermal deformation. The
situation is also possible for creep or plasticity. Because there is dimensional
change — and strain is defined as a dimensional change — why is there no stress?
The answer lies in the fact that the total strain and the inelastic strain (aT) are
equivalent and there is no elastic strain, hence, no stress. This is demonstrated
in equations (3) and (6) where the total strain is equal to the deformation and the
inelastic strain is equal to aT, which is also the same as the deformation, or

€,, = €%, = aT
ij ij
therefore,

B =
eij 0

and hence
g,. =0
1]

If the deformation is in any way restrained, then
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ij ij
therefore,
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1]
and hence
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The solutions of inelastic problems can be changed to those of elastic problems
by a general analogy between body forces and inelastic strain gradients. The gen-
eral analogy is that the strain distribution in a body subject to a given set of
body and surface forces with inelastic strain is the same as the strain distribution
in an identical body with no inelastic strain, but with an additional set of body
and surface forces., References 6 and 7 provide the analogy background. The special
application to the temperature problem is sometimes known as Duhamel's Analogy.

Creep law convergence. — Because the basic computational approach of figure 1
depends on piecewise linear sequencing, it is extremely important to evaluate the
convergence of the computational time increment. A creep experiment described in
reference 1 and a creep law obtained for the titanium alloy Ti-6A1-4V reference 2
are used to examine a convergence. The following creep law was examined for
stresses and temperatures typical of a future airframe:

Ln e;j = =24,09 + 22.54T + 0.000006 02 + 0,905 Ln O + 0.433 Ln t (19)
c



The creep law was examined for convergence for several computational time incre-
ments ranging from 0.5 to 6.0 hr. The results are presented in figure 3. A conver-
gence to within 5 percent of the asymptote can be achieved with time increments as
small as 1 hour. This result will vary with other materials, hence, the result must
be interpreted to see if the material examined displays the classic primary and sec-
ondary creep behavior. Figure 4 shows creep strain as a function of time for the
Ti-6A1-4V material (ref. 8). Definite primary and secondary effects are shown to
develop in less than 20 hr. Twenty hours of incremental analysis (20 to 40 itera-
tions) provided a relevent answer, pointing out the significance of the creep resi-
dues for most vehicles contemplated at this time. This indicator approach appears
feasible because the large numbers occur early in the problem (primary creep), making
the seriousness of the creep evident.

Determining a valid creep law may well be the most formidible challenge in terms
of predicting creep residues in high~speed airframes. It has been established
(ref. 9) that there is a great difference between steady-state creep laws and cyclic
creep laws. There is also evidence (ref. 3) that besides temperatures, time, and
stress the material thickness must also be considered in defining a creep law.
Therefore, when approaching creep effects in airframes, the difficulty of estab-
lishing the important peripheral item of a valid creep law must not be overlooked.

CONCLUDING REMARKS

When a new airframe is being developed, there is a strong tendency to rely on
proven, demonstrated computational approaches to design and analysis. This tendency
has been a strong motivator in the logic of the computational approach presented in
this paper. The analogy between the inelastic strains caused by temperature and
creep is presented in terms of isotropic elasticity. It shows how the theoretical
aspects can be blended with existing finite-~element computer programs to exact a
piecewise linear solution. The creep effect can be determined by using the thermal
stress computational approach, if appropriate alterations are made to the of of the
individual elements. The overall transient solutions can be achieved by consecutive
piecewise linear iterations. The total residue caused by creep can be obtained by
accumulating creep residues for each iteration, then the total residues for each
element are resubmitted as an equivalent input.

A typical creep law was tested for incremental time convergence. The results
indicated that the approach was quite practical, with a valid indicator of the extent
of creep present after about 20 hr of incremental time. The general analogy between
body forces and inelastic strain gradients was discussed with respect to how an
inelastic problem can be worked as an elastic problem.
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